386 research outputs found

    Another brick in understanding chemical and kinematical properties of BSSs: NGC 6752

    Full text link
    We used high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 22 Blue Straggler Stars (BSSs) and 26 red giant branch stars in the nearby globular cluster NGC 6752. We measured radial and rotational velocities and Fe, O and C abundances. According to radial velocities, metallicity and proper motions we identified 18 BSSs as likely cluster members. We found that all the BSSs rotate slowly (less than 40 km/s), similar to the findings in 47 Tucanae, NGC 6397 and M30. The Fe abundance analysis reveals the presence of 3 BSSs affected by radiative levitation (showing [Fe/H] significantly higher than that measured in "normal" cluster stars), confirming that element transport mechanisms occur in the photosphere of BSSs hotter than 8000 K. Finally, BSS C and O abundances are consistent with those measured in dwarf stars. No C and O depletion ascribable to mass transfer processes has been found on the atmospheres of the studied BSSs (at odds with previous results for 47 Tucanae and M30), suggesting the collisional origin for BSSs in NGC 6752 or that the CO-depletion is a transient phenomenon.Comment: ApJ accepte

    No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the LMC

    Full text link
    We have studied the chemical composition of NGC 1806, a massive, intermediate-age globular cluster that shows a double main sequence turnoff. We analyzed a sample of high-resolution spectra (secured with FLAMES at the Very Large Telescope) for 8 giant stars, members of the cluster, finding an average iron content of [Fe/H]=--0.60 +- 0.01 dex and no evidence of intrinsic star-to-star variations in the abundances of light elements (Na, O, Mg, Al). Also, the (m_(F814W); m_(F336W)-m_(F814W)) color-magnitude diagram obtained by combining optical and near-UV Hubble Space Telescope photometry exhibits a narrow red giant branch, thus ruling out intrinsic variations of C and N abundances in the cluster. These findings demonstrate that NGC 1806 does not harbor chemically distinct sub-populations, at variance with what was found in old globular clusters. In turn, this indicates that the double main sequence turnoff phenomenon cannot be explained in the context of the self-enrichment processes usually invoked to explain the chemical anomalies observed in old globulars. Other solutions (i.e., stellar rotation, merging between clusters or collisions with giant molecular clouds) should be envisaged to explain this class of globulars.Comment: Accepted for publication by ApJ Letters; 15 pages, 4 figures, 1 tabl

    The optical counterpart to the X-ray transient IGR J18245-2452 in the globular cluster M28

    Full text link
    We report on the identification of the optical counterpart to the recently detected INTEGRAL transient IGR J18245-2452 in the Galactic globular cluster M28. From the analysis of a multi epoch HST dataset we have identified a strongly variable star positionally coincident with the radio and Chandra X-ray sources associated to the INTEGRAL transient. The star has been detected during both a quiescent and an outburst state. In the former case it appears as a faint, unperturbed main sequence star, while in the latter state it is about two magnitudes brighter and slightly bluer than main sequence stars. We also detected Halpha excess during the outburst state, suggestive of active accretion processes by the neutron star.Comment: Accepted for publication by ApJ; 15 pages, 4 figures, 1 tabl

    FLAMES and XSHOOTER spectroscopy along the two BSS sequences of M30

    Full text link
    We present spectroscopic observations acquired with FLAMES and XSHOOTER at the Very Large Telescope for a sample of 15 Blue Straggler Stars (BSSs) in the globular cluster (GC) M30. The targets have been selected to sample the two BSS sequences discovered, with 7 BSSs along the blue sequence and 8 along the red one. No difference in the kinematical properties of the two groups of BSSs has been found. In particular, almost all the observed BSSs have projected rotational velocity lower than ~30 km/s, with only one (blue) fast rotating BSS (>90 km/s), identified as a W UMa binary. This rotational velocity distribution is similar to those obtained in 47 Tucanae and NGC 6397, while M4 remains the only GC studied so far harboring a large fraction of fast rotating BSSs. All stars hotter than ~7800 K (regardless of the parent BSS sequence) show iron abundances larger than those measured from normal cluster stars, with a clearcut trend with the effective temperature. This behaviour suggests that particle trasport mechanisms driven by radiative levitation occur in the photosphere of these stars, as already observed for the BSSs in NGC 6397. Finally, 4 BSSs belonging to the red sequence (not affected by radiative levitation) show a strong depletion of [O/Fe], with respect to the abundance measured in Red Giant Branch and Horizontal Branch stars. This O-depletion is compatible with the chemical signature expected in BSSs formed by mass transfer processes in binary systems, in agreement with the mechanism proposed for the formation of BSSs in the red sequence.Comment: Accepted for publication in Ap

    Blue Straggler masses from pulsation properties. I. The case of NGC6541

    Get PDF
    We used high-spatial resolution images acquired with the WFC3 on board HST to probe the population of variable blue straggler stars in the central region of the poorly studied Galactic globular cluster NGC 6541. The time sampling of the acquired multi wavelength (F390W, F555W and F814W) data allowed us to discover three WUma stars and nine SX Phoenicis. Periods, mean magnitudes and pulsation modes have been derived for the nine SX Phoenicis and their masses have been estimated by using pulsation equations obtained from linear non adiabatic models. We found masses in the range 1.0-1.1Mo, with an average value of 1.06+-0.09 Mo (sigma = 0.04), significantly in excess of the cluster Main Sequence Turn Off mass (~ 0.75Mo). A mild trend between mass and luminosity seems also to be present. The computed pulsation masses turn out to be in very good agreement with the predictions of evolutionary tracks for single stars, indicating values in the range ~ 1.0-1.2 Mo for most of the BSS population, in agreement with what discussed in a number of previous studies.Comment: 8 pages, 9 figures, ApJ, accepte

    The Optical Counterpart to the Accreting Millisecond X-ray Pulsar SAX J1748.9-2021 in the Globular Cluster NGC 6440

    Get PDF
    We used a combination of deep optical and Halpha images of the Galactic globular cluster NGC 6440, acquired with the Hubble Space Telescope, to identify the optical counterpart to the accreting millisecond X-ray pulsar SAX J1748.9-2021during quiescence. A strong Halpha emission has been detected from a main sequence star (hereafter COM-SAX J1748.9-2021) located at only 0.15" from the nominal position of the X-ray source. The position of the star also agrees with the optical counterpart found by Verbunt et al. (2000) during an outburst. We propose this star as the most likely optical counterpart to the binary system. By direct comparison with isochrones, we estimated that COM-SAX J1748.9-2021 has a mass of 0.70 Msun - 0.83 Msun, a radius of 0.88 pm 0.02 Rsun and a superficial temperature of 5250pm80 K. These parameters combined with the orbital characteristics of the binary suggest that the system is observed at a very low inclination angle (~8 deg -14 deg) and that the star is filling or even overflowing its Roche Lobe. This, together with the equivalent width of the Halpha emission (~20 Ang), suggest possible on-going mass transfer. The possibile presence of such a on-going mass transfer during a quiescence state also suggests that the radio pulsar is not active yet and thus this system, despite its similarity with the class of redback millisecond pulsars, is not a transitional millisecond pulsar.Comment: 8 pages, 6 figures. Accepted for publication in Ap

    Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808

    Get PDF
    We derive [K/Fe] abundance ratios for 119 stars in the globular cluster NGC 2808, all of them having O, Na, Mg and Al abundances homogeneously measured in previous works. We detect an intrinsic star-to-star spread in the Potassium abundance. Moreover [K/Fe] abundance ratios display statistically significant correlations with [Na/Fe] and [Al/Fe], and anti-correlations with [O/Fe] and [Mg/Fe]. All the four Mg deficient stars ([Mg/Fe]<0.0) discovered so far in NGC 2808 are enriched in K by ~0.3 dex with respect to those with normal [Mg/Fe]. NGC 2808 is the second globular cluster, after NGC 2419, where a clear Mg-K anti-correlation is detected, albeit of weaker amplitude. The simultaneous correlation/anti-correlation of [K/Fe] with all the light elements usually involved in the chemical anomalies observed in globular cluster stars, strongly support the idea that these abundance patterns are due to the same self-enrichment mechanism that produces Na-O and Mg-Al anti-correlations. This finding suggests that detectable spreads in K abundances may be typical in the massive globular clusters where the self-enrichment processes are observed to produce their most extreme manifestations.Comment: Accepted for publication by ApJ, 5 pages, 3 figure
    • …
    corecore